Como ganhar no Banco Imobiliário após infinitas jogadas

Ian Bernardes Barcellos

16/10/2015

O Jogo

Para um tabuleiro com N casas, podemos utilizar uma transformação linear para prever as probabilidades de se estar e alguma casa após um certo número de jogadas.

Para um tabuleiro com N casas, podemos utilizar uma transformação linear para prever as probabilidades de se estar e alguma casa após um certo número de jogadas.

• Definimos um vetor v com N entradas, com a componente v_j do vetor representando a probabilidade de estar na casa j em determinado momento do jogo.

Para um tabuleiro com N casas, podemos utilizar uma transformação linear para prever as probabilidades de se estar e alguma casa após um certo número de jogadas.

- Definimos um vetor v com N entradas, com a componente v_j do vetor representando a probabilidade de estar na casa j em determinado momento do jogo.
- Definimos uma matriz P de dimensão NxN, com a componente p_{ij} dessa matriz representando a probabilidade de, saindo da casa j, ir para a casa i após 1 jogada.

Para um tabuleiro com N casas, podemos utilizar uma transformação linear para prever as probabilidades de se estar e alguma casa após um certo número de jogadas.

- Definimos um vetor v com N entradas, com a componente v_j do vetor representando a probabilidade de estar na casa j em determinado momento do jogo.
- Definimos uma matriz P de dimensão NxN, com a componente p_{ij} dessa matriz representando a probabilidade de, saindo da casa j, ir para a casa i após 1 jogada.

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix} \qquad P = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1N} \\ p_{21} & p_{22} & \cdots & p_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N1} & p_{N2} & \cdots & p_{NN} \end{pmatrix}$$

Se $v^{(0)}$ é o vetor de probabilidades em dado momento do jogo, a propabilidade de estar na casa i após uma jogada é:

$$v_i^{(1)} = \sum_{j=1}^N p_{ij} \cdot v_j^{(0)}$$

Se $v^{(0)}$ é o vetor de probabilidades em dado momento do jogo, a propabilidade de estar na casa i após uma jogada é:

$$v_i^{(1)} = \sum_{j=1}^N p_{ij} \cdot v_j^{(0)}$$

Definindo o vetor de probabilidades após uma jogada da mesma maneira que antes, isso significa:

$$v^{(1)} = P \cdot v^{(0)}$$

Se $v^{(0)}$ é o vetor de probabilidades em dado momento do jogo, a propabilidade de estar na casa i após uma jogada é:

$$v_i^{(1)} = \sum_{j=1}^N p_{ij} \cdot v_j^{(0)}$$

Definindo o vetor de probabilidades após uma jogada da mesma maneira que antes, isso significa:

$$v^{(1)} = P \cdot v^{(0)}$$

Após k jogadas:

$$v^{(k)} = P^k \cdot v^{(0)}$$

Se $v^{(0)}$ é o vetor de probabilidades em dado momento do jogo, a propabilidade de estar na casa i após uma jogada é:

$$v_i^{(1)} = \sum_{j=1}^N p_{ij} \cdot v_j^{(0)}$$

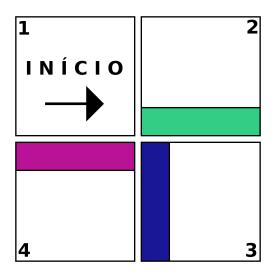
Definindo o vetor de probabilidades após uma jogada da mesma maneira que antes, isso significa:

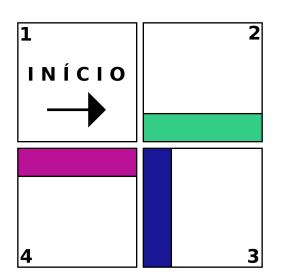
$$v^{(1)} = P \cdot v^{(0)}$$

Após k jogadas:

$$v^{(k)} = P^k \cdot v^{(0)}$$

O que será que acontece quando $k \to \infty$?





$$P = \begin{pmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

K	Casa 1	Casa 2	Casa 3	Casa 4
0	1	0	0	0

K	Casa 1	Casa 2	Casa 3	Casa 4
0	1	0	0	0
1	0.000	0.500	0.500	0.000

K	Casa 1	Casa 2	Casa 3	Casa 4
0	1	0	0	0
1	0.000	0.500	0.500	0.000
2	0.250	0.000	0.250	0.500
	1			

K	Casa 1	Casa 2	Casa 3	Casa 4
0	1	0	0	0
1	0.000	0.500	0.500	0.000
2	0.250	0.000	0.250	0.500
3	0.375	0.375	0.125	0.125
i	'		'	'

K	Casa 1	Casa 2	Casa 3	Casa 4
0	1	0	0	0
1	0.000	0.500	0.500	0.000
2	0.250	0.000	0.250	0.500
3	0.375	0.375	0.125	0.125
4	0.125	0.250	0.375	0.250
5	0.312	0.188	0.188	0.312
6	0.250	0.312	0.250	0.188
7	0.219	0.219	0.281	0.281
8	0.281	0.250	0.219	0.250
9	0.234	0.266	0.266	0.234
10	0.250	0.234	0.250	0.266
11	0.258	0.258	0.242	0.242
12	0.242	0.250	0.258	0.250
13	0.254	0.246	0.246	0.254
14	0.250	0.254	0.250	0.246
15	0.248	0.248	0.252	0.252
16	0.252	0.250	0.248	0.250
17	0.249	0.251	0.251	0.249
18	0.250	0.249	0.250	0.251
19	0.250	0.250	0.250	0.250
20	0.250	0.250	0.250	0.250

K	Casa 1	Casa 2	Casa 3	Casa 4
0	1	0	0	0
1	0.000	0.500	0.500	0.000
2	0.250	0.000	0.250	0.500
3	0.375	0.375	0.125	0.125
4	0.125	0.250	0.375	0.250
5	0.312	0.188	0.188	0.312
6	0.250	0.312	0.250	0.188
7	0.219	0.219	0.281	0.281
8	0.281	0.250	0.219	0.250
9	0.234	0.266	0.266	0.234
10	0.250	0.234	0.250	0.266
11	0.258	0.258	0.242	0.242
12	0.242	0.250	0.258	0.250
13	0.254	0.246	0.246	0.254
14	0.250	0.254	0.250	0.246
15	0.248	0.248	0.252	0.252
16	0.252	0.250	0.248	0.250
17	0.249	0.251	0.251	0.249
18	0.250	0.249	0.250	0.251
19	0.250	0.250	0.250	0.250
20	0.250	0.250	0.250	0.250

K	Casa 1	Casa 2	Casa 3	Casa 4
0	0	1	0	0

K	Casa 1	Casa 2	Casa 3	Casa 4
0	1	0	0	0
1	0.000	0.500	0.500	0.000
2	0.250	0.000	0.250	0.500
3	0.375	0.375	0.125	0.125
4	0.125	0.250	0.375	0.250
5	0.312	0.188	0.188	0.312
6	0.250	0.312	0.250	0.188
7	0.219	0.219	0.281	0.281
8	0.281	0.250	0.219	0.250
9	0.234	0.266	0.266	0.234
10	0.250	0.234	0.250	0.266
11	0.258	0.258	0.242	0.242
12	0.242	0.250	0.258	0.250
13	0.254	0.246	0.246	0.254
14	0.250	0.254	0.250	0.246
15	0.248	0.248	0.252	0.252
16	0.252	0.250	0.248	0.250
17	0.249	0.251	0.251	0.249
18	0.250	0.249	0.250	0.251
19	0.250	0.250	0.250	0.250
20	0.250	0.250	0.250	0.250

K	Casa 1	Casa 2	Casa 3	Casa 4
0	0	1	0	0
1	0.000	0.000	0.500	0.500
2	0.500	0.250	0.000	0.250
3	0.125	0.375	0.375	0.125
4	0.250	0.125	0.250	0.375
5	0.312	0.312	0.188	0.188
6	0.188	0.250	0.312	0.250
7	0.281	0.219	0.219	0.281
8	0.250	0.281	0.250	0.219
9	0.234	0.234	0.266	0.266
10	0.266	0.250	0.234	0.250
11	0.242	0.258	0.258	0.242
12	0.250	0.242	0.250	0.258
13	0.254	0.254	0.246	0.246
14	0.246	0.250	0.254	0.250
15	0.252	0.248	0.248	0.252
16	0.250	0.252	0.250	0.248
17	0.249	0.249	0.251	0.251
18	0.251	0.250	0.249	0.250
19	0.250	0.250	0.250	0.250
20	0.250	0.250	0.250	0.250

0 0.13 0.28 0.45 0	0.14

K	Casa 1	Casa 2	Casa 3	Casa 4
0	0.13	0.28	0.45	0.14
1	0.295	0.135	0.205	0.365
2	0.285	0.330	0.215	0.170
3	0.193	0.228	0.307	0.273
4	0.290	0.233	0.210	0.268
5	0.239	0.279	0.261	0.221
6	0.241	0.230	0.259	0.270
7	0.264	0.256	0.236	0.244
8	0.240	0.254	0.260	0.246
9	0.253	0.243	0.247	0.257
10	0.252	0.255	0.248	0.245
11	0.246	0.249	0.254	0.251
12	0.253	0.249	0.247	0.251
13	0.249	0.252	0.251	0.248
14	0.249	0.249	0.251	0.251
15	0.251	0.250	0.249	0.250
16	0.249	0.250	0.251	0.250
17	0.250	0.250	0.250	0.250
18	0.250	0.250	0.250	0.250
19	0.250	0.250	0.250	0.250
20	0.250	0.250	0.250	0.250

• Todos os jogadores começam no início.

- Todos os jogadores começam no início.
- Cada jogador lança 2 dados de 6 lados, e anda o número de casas dado pela soma dos 2.

- Todos os jogadores começam no início.
- Cada jogador lança 2 dados de 6 lados, e anda o número de casas dado pela soma dos 2.
- Se um jogador cai na prisão apenas com movimentos dos dados, é apenas um visitante e pode sair normalmente.

- Todos os jogadores começam no início.
- Cada jogador lança 2 dados de 6 lados, e anda o número de casas dado pela soma dos 2.
- Se um jogador cai na prisão apenas com movimentos dos dados, é apenas um visitante e pode sair normalmente.
- Se um jogador cai na casa "vá para a prisão", ou tira uma carta com essa ordem, fica preso até que tire dados duplos ou não tenha conseguido sair nas últimas 3 rodadas.

- Todos os jogadores começam no início.
- Cada jogador lança 2 dados de 6 lados, e anda o número de casas dado pela soma dos 2.
- Se um jogador cai na prisão apenas com movimentos dos dados, é apenas um visitante e pode sair normalmente.
- Se um jogador cai na casa "vá para a prisão", ou tira uma carta com essa ordem, fica preso até que tire dados duplos ou não tenha conseguido sair nas últimas 3 rodadas.
- Quando o jogador cai em uma casa de sorte ou revés, tira uma carta, cumpre a ordem e a devolve para o final para o baralho.

As cartas de sorte ou revés (25 no total) são distribuídas da forma:

• 1 carta de "volte ao terreno mais próximo".

- 1 carta de "volte ao terreno mais próximo".
- 1 carta de "volte 3 casas".

- 1 carta de "volte ao terreno mais próximo".
- 1 carta de "volte 3 casas".
- 2 cartas de "vá para a prisão".

- 1 carta de "volte ao terreno mais próximo".
- 1 carta de "volte 3 casas".
- 2 cartas de "vá para a prisão".
- 2 cartas de "vá para o início".

- 1 carta de "volte ao terreno mais próximo".
- 1 carta de "volte 3 casas".
- 2 cartas de "vá para a prisão".
- 2 cartas de "vá para o início".
- 2 cartas de "saia da prisão".

- 1 carta de "volte ao terreno mais próximo".
- 1 carta de "volte 3 casas".
- 2 cartas de "vá para a prisão".
- 2 cartas de "vá para o início".
- 2 cartas de "saia da prisão".
- 17 cartas que não influenciam movimentos.

Dificuldades

• Multiplicar matrizes é chato!

- Multiplicar matrizes é chato!
- Multiplicar matrizes é demorado (mesmo no computador)!

- Multiplicar matrizes é chato!
- Multiplicar matrizes é demorado (mesmo no computador)!
- Será que a matriz converge?
- Se converge, o quão rápido ela converge? (Quantas multiplicações devemos fazer?)

- Multiplicar matrizes é chato!
- Multiplicar matrizes é demorado (mesmo no computador)!
- Será que a matriz converge?
- Se converge, o quão rápido ela converge? (Quantas multiplicações devemos fazer?)

O que fazer?

Definições

• Definição 1: Uma matriz é dita não-negativa se todas suas entradas são não-negativas.

Definições

- Definição 1: Uma matriz é dita não-negativa se todas suas entradas são não-negativas.
- Definição 2: Uma matriz quadrada é irredutível se não pode ser colocada em forma triangular superior por uma matriz de permutação.

Definições

- Definição 1: Uma matriz é dita não-negativa se todas suas entradas são não-negativas.
- Definição 2: Uma matriz quadrada é irredutível se não pode ser colocada em forma triangular superior por uma matriz de permutação.

 Definição 3: Uma matriz quadrada é dita estocástica se a soma de todas as entradas de cada coluna (ou linha) é 1.

• Teorema 1: Uma matriz quadrada não-negativa é irredutível se para cada par (i,j) existe um número natural k tal que $[A^k]_{ij} > 0$.

- Teorema 1: Uma matriz quadrada não-negativa é irredutível se para cada par (i,j) existe um número natural k tal que $[A^k]_{ij} > 0$.
- Teorema 2 (Perron-Frobenius): Se A é uma matriz NxN, estocástica, não-negativa e irredutível, então (entre outras coisas):

- Teorema 1: Uma matriz quadrada não-negativa é irredutível se para cada par (i,j) existe um número natural k tal que $[A^k]_{ij} > 0$.
- Teorema 2 (Perron-Frobenius): Se A é uma matriz NxN, estocástica, não-negativa e irredutível, então (entre outras coisas):
 - $\lambda=1$ é autovalor de A, com multiplicidades algébrica e geométrica 1, e todos os outros autovalores são menores em módulo do que 1.

- Teorema 1: Uma matriz quadrada não-negativa é irredutível se para cada par (i,j) existe um número natural k tal que $[A^k]_{ij} > 0$.
- Teorema 2 (Perron-Frobenius): Se A é uma matriz NxN, estocástica, não-negativa e irredutível, então (entre outras coisas):
 - $\lambda=1$ é autovalor de A, com multiplicidades algébrica e geométrica 1, e todos os outros autovalores são menores em módulo do que 1.
 - A possui um autovetor w associado ao autovalor $\lambda=1$, que possui todas as entradas positivas, e que pode ser escolhido de forma que $\sum\limits_{i=1}^{N}w_{i}=1$. Além disso, não existem autovetores positivos linearmente indepententes de w.

- Teorema 1: Uma matriz quadrada não-negativa é irredutível se para cada par (i,j) existe um número natural k tal que $[A^k]_{ij} > 0$.
- Teorema 2 (Perron-Frobenius): Se A é uma matriz NxN, estocástica, não-negativa e irredutível, então (entre outras coisas):
 - $\lambda=1$ é autovalor de A, com multiplicidades algébrica e geométrica 1, e todos os outros autovalores são menores em módulo do que 1.
 - A possui um autovetor w associado ao autovalor $\lambda=1$, que possui todas as entradas positivas, e que pode ser escolhido de forma que $\sum\limits_{i=1}^{N}w_{i}=1$. Além disso, não existem autovetores positivos linearmente indepententes de w.
 - Para qualquer vetor v que satizfaz $\sum_{i=1}^{N} v_i = 1$, o limite a seguir existe e vale w.

$$\lim_{k\to\infty} A^k v = w$$

• A nossa matriz P é não-negativa?

- A nossa matriz P é não-negativa?
- A nossa matriz P é estocástica?

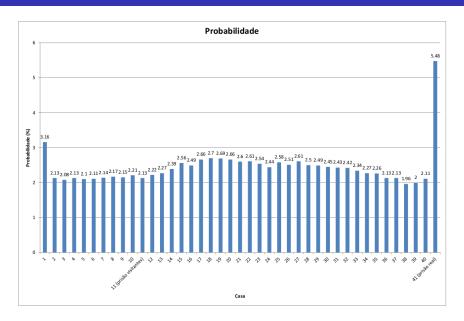
- A nossa matriz P é não-negativa?
- A nossa matriz P é estocástica?
- A nossa matriz P é irredutível?

- A nossa matriz P é não-negativa?
- A nossa matriz P é estocástica?
- A nossa matriz P é irredutível?

Logo, existe um vetor w (cujas entradas somam 1) que satisfaz Aw = w tal que pra todo vetor v (cujas entradas somam 1) vale:

$$\lim_{k\to\infty} P^k v = w$$

Resultados



Resultados

Física: Estudo de processos em Termodinâmica e Física Estatística.
 Quando os processos são estocásticos geralmente é possível obter o estado de equilíbrio do sistema.

- Física: Estudo de processos em Termodinâmica e Física Estatística.
 Quando os processos são estocásticos geralmente é possível obter o estado de equilíbrio do sistema.
- Química: Alguns modelos de reações enzimáticas são processos estocásticos, e pode-se obter o estado de equilíbrio utilizando os mesmos métodos.

- Física: Estudo de processos em Termodinâmica e Física Estatística.
 Quando os processos são estocásticos geralmente é possível obter o estado de equilíbrio do sistema.
- Química: Alguns modelos de reações enzimáticas são processos estocásticos, e pode-se obter o estado de equilíbrio utilizando os mesmos métodos.
- Biologia: Estudos de evolução populacional.

- Física: Estudo de processos em Termodinâmica e Física Estatística.
 Quando os processos são estocásticos geralmente é possível obter o estado de equilíbrio do sistema.
- Química: Alguns modelos de reações enzimáticas são processos estocásticos, e pode-se obter o estado de equilíbrio utilizando os mesmos métodos.
- Biologia: Estudos de evolução populacional.
- Música: É possível utilizar matrizes estocásticas para criar algoritmos para composição de músicas.

- Física: Estudo de processos em Termodinâmica e Física Estatística.
 Quando os processos são estocásticos geralmente é possível obter o estado de equilíbrio do sistema.
- Química: Alguns modelos de reações enzimáticas são processos estocásticos, e pode-se obter o estado de equilíbrio utilizando os mesmos métodos.
- Biologia: Estudos de evolução populacional.
- Música: É possível utilizar matrizes estocásticas para criar algoritmos para composição de músicas.
- Gerador de textos automáticos.

Referências

• http://www.todasasconfiguracoes.com/2012/10/19/banco-imobiliario/

 $\bullet \ http://www.math.yorku.ca/Who/Faculty/Steprans/Courses/2042/Monormal and the state of the s$

 Henryk Minc. Nonnegative matrices. John Wiley&Sons. Nova York, 1988.