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ABSTRACT

How does your calculator quickly produce the values of trigonometric functions?
You might be surprised to learn that it does not use series or polynomial approx-
imation, but rather the so-called CORDIC method. This paper will focus on the
geometry of the CORDIC method, as originally developed by Volder in 1959. This
algorithm is a wonderful application of sequences and will be demonstrated on the
TI-86. We will also provide a rigorous convergence proof for the CORDIC method.

1. Introduction.

We presented a general introduction to the CORDIC method last year at the
Ninth Annual ICTCM meeting in Reno [1]. In this paper we will focus on how the
CORDIC algorithm is used on calculators for finding the values of the trigonometric
functions.

Given an angle 0, —w/2 < 6 < 7/2, the CORDIC equations for approximating
the sine and cosine of § are

Thi1 = Tk — Opyr2 "
Yet1 = Yk + Opzi2 "

Zk+1 = Rk — (Sk tan_l 2_k.

The constants oy = tan~'27% are permanently stored in the calculator’s memory.

The constants d;, are nothing more than comparisons, given by the signum function

1, 2 > 0

and have the effect of driving the z values toward zero.



The starting values are g = K = H?:o cos(o;), a stored constant, yo = 0, and
zo = 0, the given angle. We will show that for large n, z,4+1 ~ 0, z,+1 = cosf,
and y,11 ~ sinf. Notice that these equations involve only additions, subtractions,
digit shifts (multiplication by 27*), comparisons, and the recall of a small number
of stored constants o3, = tan~! 27%. (Although the CORDIC algorithm is actually
programmed in base 10, we will present the main ideas in binary arithmetic.)

The CORDIC algorithm was originally developed for calculating trigonometric
functions [3]. The above equations were given the name rotation mode because the
z values are “rotated” to zero. We will look closely at this geometric interpretation
in Section 2.

2. Geometrical Interpretation of CORDIC.
We analyze the geometry of the CORDIC trigonometric algorithm by rewriting
the equations for x and y in the following matrix form.

T+ | _ | 1 —0527F] [y,
Yk+1 6,27k 1 Yk
Since o) = tan"'27% tanoy, = 2% and sinoy = (cosoy)27F. Hence, we can
rewrite the 2 x 2 matrix above as

1 COS O, —6k(cosop)27k] 1 cosoy  —O0sinoy
Sk (cosop)27F COS O}, cos oy | Ok sinoy COS O,

1 cos(6gor) —sin(dpoy)
COS Ok sin(ékak) COS(&kO'k) )

COS O

This matrix can be interpreted as the matrix of a “scaled rotation.” The matrix

cos(dkog) —sin(dgog)
[sin(ékak) cos(0xox) }

produces a counterclockwise rotation through an angle 604 = +0 = +tan~!127F

while the factor 1/(cosoy) scales the result. Geometrically, the point (z,yx) is

rotated by an angle +-0, = +tan~! 27% and then stretched by the factor 1/(cos oy,),

as indicated in Figure 1.



It is now easy to see why this algorithm works. From the equation zgxi1 =
2k — 00k = 2k — O tan~127% and 2z = 6, it follows that Zny1 = 0 — ZZZO 0k0)-
For large n, we will show that z,11 ~ 0 and 6 = ZZ:O 0x0. By composing the
(n + 1) rotations, the following analysis shows that the z values tend to cos@ and
the y values tend to sin6:

Y1 cosog | sin(dgog)  cos(dpop) 0

za| 1 cos(dpog + 0101) —sin(dpop + d1o1) | | K
Yo | ~ cosogcosoy | sin(bpog +d101)  cos(Spop + d101) 0

[m}: 1 [cos((SOJO) —sin(dgao)}[K}

Tpt1 _ 1 cos(Dp_o0kor) —sin(>r_o0kok) | [ K
] | I[o]

Ynt1| cosogcosor---cosoy, | SIN(Dg_o0kok)  cos(Dp_gO0kor) | | O
Ni cos —sinf| (K| |[cosf
T K |sinf  cos6 0| |sind
3. Convergence.

The convergence properties of the sequences arising from the CORDIC algorithm
depend on the following key theorem ([2], p. 320).

Convergence Theorem. Let og > 01 > -+ > 0, > 0 be a decreasing sequence of
positive numbers satisfying

n
o < oy, + Z oj, for0<k<mn.
j=k+1

Let r be a number satisfying

n
Ir| <op+ Zaj.
§=0

Define the sequence sy = 0 and Skx+1 = Sk + prok, k =0,1,...,n, where

17 7"2819

pkzsgn(r—sk):{_l T < Sk



Then .
|T—sk\§0n+20j, for 0 <k <n.
=k

In particular, |r — sp41| < op.

Proof. The proof is by induction on k. For k£ = 0, we immediately have
n
lr—so| = |r| < on + Zoj.
§=0

Now assume that the theorem is true for k and consider |r—sg11| = |r—sx—prok|-
If r — s, > 0, then pr, = 1 and we have |r — sx — prok| :‘ lr — sg| — ok ‘ . On the
other hand, if r — s < 0, then pr = —1 and |r — s — prok| = |7 — sk + ok| =
|sg — 1 — o%| :‘ Ir — sk| — ok | . Therefore, in either case we have |r — sgy1| =
|7'_3k_pk0'k‘ :| "I”—Sk‘—O'k | .

From the first inequality hypothesis we have

n
—|on+ E oj | < —ok <|r— skl — o
=kt

By the induction hypothesis,

n n
Ir — skl —or < on-i-g oj | —ok=|0n+ E o
j=k j=k+1

Combining these two inequalities,

n
r — sl =| Ir — sp| — ok [< on + Z Tj,
j=k+1

which shows that the theorem is true for k + 1. Finally, —o,, < |r — s,| — 0, <

20, — 0 = 0y, and thus |7 — s,11]| :‘ |1 — sp| — on ‘S 0n, which completes the
proof. [ |
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The following theorem states that the sequence o = tan='27% k = 0,1,...n,
used in the trigonometric algorithm, satisfies the Convergence Theorem.

Theorem. For n > 3, the sequence o, = tan™'27% k = 0,1,...,n satisfies the
hypothesis of the convergence theorem for all |r| < m/2.

. 141 _ -11 -11 11
Proof. The given sequence tan™" 1 = w/4,tan™" 5,tan™" ,...,tan™" 5 is clearly

a decreasing sequence of positive numbers.
The Mean Value Theorem says that there exists a number ¢ between a and b
such that

tan"!b—tan"la 1

— :1+c2’ a<c<hb.

Let a = 2=U+D and b = 277 in this equation. Then b —a = 2-0U+D and

1 1 1 22j+2

< = - = — -
1+ ¢2 1+ a2 142-25-2 14 227+2

Hence,

1 1 92j+2 9J+1

0 =0 =0—0) 5 S onn T 10w

Now let @ = 0 and b = 277 in the Mean Value Theorem equation. Then we have

1 1 1 22

1+ 1402 1422 1195

and . .
1 1 227 27

=b — > — - = .,
14¢2 = 27 1422 1422

We combine these inequalities involving the o; using a telescoping series.

9j



~~

Ok — Ok41) + (Oky1 — Okg2) + -+ (On_1 — on)
1

Ok —0Onp =

S
|

(0 — 0jt1)

Ing

i=k
nol o g+l
<>
14 225+2
J=k
= 27
Parwl 1424
n
< gj

1

I?Ir
+

J

which lets us conclude that

n
o <o, + Z oj, for 0 <k <mn.
j=k+1

Since tan™' 1+ tan~' 1 + tan~! 7 + tan~' § ~ 0.78540 + 0.46365 + 0.24498 +
0.12435 ~ 1.618 > m/2, it is also clear that

3 n
Ir| <m/2< Ztan_l 270 <o+ Zaj,
7=0 Jj=0

which completes the proof. [ |

To prove that the CORDIC trigonometric algorithm converges, we first define
the sequence s = 0 — 2z, = Zf;é djo;. We see that so = 6 — zp = 0 and sp41 =
Z?:o dj0; = Sk + 0gog. For r = 6, we have pp = sgn(r — sg) = sgn(f — sx) =
sgn(zr) = 0. Hence, this sequence sy satisfies the Convergence Theorem:

0 — sp41| < 0 =tan~ 127" < 1/27,
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Now we will show that the CORDIC sequences zj and yj, yield 2,41 ~ cos(sp4+1)
and yn4+1 ~ sin(sp+1). To this end, we prove the following lemma.

Lemma. For the sequence s defined earlier,

cos(sg11) = cos(oy)[cos(sg) — O sin(sg) 277]

sin(spy1) = cos(op)[sin(sk) + 65 cos(sk)2 ]

Proof. The proofs are based on elementary trigonometric identities. For the first
formula,

cos(sg+1) = cos(sg + 0xox)

cos(sg) cos(droy) — sin(sg) sin(dxox)
)
)
)

cos(og)[cos(sk) — Ok sin

|
o

cos(og) — O sin(sg) sin(og)

cos(oy)[cos(sk) — Ok sin(sg) tan(oy)]

(

(
os(sg

( (

( (s1)27"]

Similarly, for the sine formula,

SiIl(Sk + 5k0'k)

)
)

sin(sg+1)

sin(sg) cos(0gok) + cos(sg) sin(dxox)

|
n

in(sx) cos(ok) + O cos(sg) sin(oy)

cos(o)[sin(sg) + 0 cos(sg) tan(oy)]

(
cos(oy)[sin(sg) + Ok cos(sx)27¥]

Now define



Wg4+1 = (cosogcosoy ---cosoyg) /K

Wpt1 = (Cosogcosoy ---cosoy,)/K =1,

and consider the sequences

Cy = (cos s)/wg Co = (cos sp)/wg = K
Sk = (sin sg) /wy So = (sin sg)/wo = 0.

Using the lemma we see that

cos(Sg11) _ cos(o)[cos(s) — O sin(sy)27F]

Cry1= ”
k+1 Wr+1

K . K

= [cos(sk) — Ok sin(sg)27"]
COSOQ -+ COSOk_1

cos s O sin(sy)27F

Wi Wi
=Ck — (5k5k2_k.

Similarly,
Sk+1 = Sk + (5k0k2_k.
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In other words, the equations for Cy and Sy are precisely those of zx and yi in
the CORDIC algorithm! Since w,+; = 1, we have

Tnt1 = Cpy1 = co8(Sp41)/Wnt1 = coS(Sp41)

Yn4+1 = Sn—l—l - Sin(8n+1)/wn+1 - Sin(8n+1)-

Finally, the Mean Value Theorem applied to the cosine function says that there
exists a number ¢ between 6 and s,,1 such that

cos 0 — cos(Sp+1) o sine

0 — Sn41

Hence, the inequality |§ — s,41] < 1/2™ gives us an error bound for the cosine
computation.

|cosé’ - a:n+1| = ‘cos@ - cos(sn+1)| = |—sincH9 - 5n+1‘ < ‘9 — 3n+1| <1/2"
Similarly, [sin 6 — y,41| = [sin6 — sin(s,41)] < 1/2™
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